
Overhearing Conversations in Global Software
Engineering - Requirements and an Implementation

Kevin Dullemond
Delft University of Technology

IHomer
The Netherlands

k.dullemond@tudelft.nl

Ben van Gameren
Delft University of Technology

IHomer
The Netherlands

b.j.a.vangameren@tudelft.nl

Rini van Solingen
Delft University of Technology

The Netherlands
d.m.vansolingen@tudelft.nl

Abstract—Conversations between colleagues in collaborative
software engineering are important for coordinating work, shar-
ing knowledge and creating knowledge. Overhearing conversa-
tions of others is useful as well since this: (i) provides access
to the information discussed in the conversations, (ii) offers the
possibility of joining the conversations and (iii) provides insight
in the communication structure of the project team. However,
when team members are geographically separated, tooling is
needed to be able to support the overhearing of conversations
between them. In this paper we present the requirements such
tools should fulfill, discuss existing solutions and present our own
implementation of such a tool: Communico.

Index Terms—Overhearing Conversations, Collaborative Soft-
ware Engineering, Global Software Engineering, Open Conver-
sation Space, Requirements, Communico

I. INTRODUCTION

It is becoming increasingly common for collaborative Soft-
ware Engineering teams to no longer conduct their work
from a single office building. This happens both due to the
globalization of business [1], [2], [3] and because people are
starting to work from home more and more [4]. Advantages
of the globalization of business include: market-proximity [5],
[6], reducing time-to- market by working around the clock [1],
[7], flexibility with respect to business opportunities [1], [8],
reducing costs by delegating work to countries with low labor
cost [9], [6] and being able to fully utilize available resources
[2], [6]. Advantages of working from home include: increased
autonomy [10], increased flexibility [10], increased productiv-
ity [11], increased motivation [12] and improvement in the
quality of the environment [10]. Since team members do not
share a physical work environment when working distributed
from each other, information exchange between them becomes
infeasible without technological support. This information
exchange, however, is necessary to acquire knowledge about
the context in which you are working. This knowledge is
essential in collaborative work to properly cooperate with
others [13], [14] and is commonly referred to as ’awareness’
[13], [15]. In general, however, the technological support used
to acquire awareness (such as telephone or email) is inferior
to the way contextual information is shared in a traditional co-
located setting, because in comparison it (i) takes more effort
since the communication is more intentional [16], (ii) is more

obtrusive [17], (iii) happens less frequently [18], [19] and (iv)
contains less information [16], [20].

One of the most important communication patterns that
occur in a traditional office setting are conversations [21].
Dullemond et al. [22] define a conversation in the context of
Global Software Engineering as: ”An exchange of information
between two or more people where those participating use syn-
chronous communication directed at the other participants”.
Conversations are important to integrate and coordinate work
[23], [24], [25], share existing knowledge [26], [27] and
create new knowledge [28], [26], [27]. When working in a
distributed setting having conversations is supported by IM-
tools, audio conferencing and video conferencing. However,
it is not only important to have conversations yourself, but
it is also important to overhear the conversations of others
[22]. Firstly, this provides access to the information which is
discussed in these conversations [24]. Secondly, having insight
in the ongoing conversations provides the opportunity to join
a conversation and take advantage of the benefits this offers
[29]. Finally, by having access to the communication frequen-
cies between colleagues, the insight into the communication
structure of the project team is increased [30], [31], [32].
Dullemond et al. [22] define an Open Conversation Space:
”A space in which (i) conversations are possible between the
actors in that space and (ii) these conversations are visible to
other actors in that space.” and a Virtual Open Conversation
Space: ”An Open Conversation Space which is applicable in
a distributed setting”. We will use these notions in this paper
as well. Dullemond et al. [22] also describe a prototype tool
called Communico which is intended as an initial attempt at a
Virtual Open Conversation Space as well as provide an initial
evaluation of this prototype.

The goal of this paper is to: Define a set of requirements
of an Open Conversation Space and to discuss an improved
version of Communico based on these requirements.

We will first define the set of requirements in section 2.
Subsequently, in section 3, we will discuss existing tooling for
communicating in a distributed setting, discuss whether or not
these tools can be regarded as a Virtual Open Conversation
Space and compare these with Communico based on how
they implement the set of requirements. Following this, we
will present an improved version of Communico in section



4 and discuss how it realizes the requirements of an Open
Conversation Space. Finally, we will discuss the limitations
and future work and conclude upon our research.

II. REQUIREMENTS OF AN OPEN CONVERSATION SPACE

Having introduced the concept of an Open Conversation
Space we will discuss the five requirements such a space
should implement in this section. These five requirements are:

REQ1. Facilitate starting conversations
REQ2. Facilitate detecting active conversations
REQ3. Facilitate monitoring active conversations
REQ4. Facilitate participating in conversations
REQ5. Facilitate the finishing of conversations
We have derived these requirements by analyzing the life

cycle of a conversation in a structured fashion. First the conver-
sation is started in some way, subsequently the conversation is
active for a certain amount of time and finally the conversation
ends and reaches the end state of being a finished conversation.
We will also use these three states to structure the discussion
of the requirements of an Open Conversation Space. In this
discussion we will illustrate the concepts by showing how
the requirements are implemented in co-located situations, in
particular the traditional office setting.

A. Uninitialized Conversation

In an Open Conversation Space the actors should be able
to have a conversation and therefore it should be possible
for conversations to be initiated (REQ1). In general, there
are two ways to initiate a conversation: direct and indirect.
Firstly, in an office setting the most common way to initiate
a conversation is by walking up to a colleague and starting
to talk to him or her. Basically, you choose a specific per-
son, or a specific group of people to initially participate in
the conversation. This participant-based kind of conversation
initiation is a direct way to initiate a conversation. Namely,
the initiation of the conversation is part of the conversation
because the communication is synchronous and directed at the
other participants. Examples outside of the co-located office
are calling someone on the phone or sending an IM-message
to someone. It is also possible to initiate a conversation
indirectly. Examples are asking for help in general and making
an announcement. In a traditional office setting this can be
done by talking out loud or writing something on a white-
board while outside of the traditional office setting a chat
room or a forum can be used. Note that when initiating a
conversation in this fashion, the initiation is not part of the
conversation because the communication is not directed at the
other participants (there are none), but rather at a certain group
of potential participants.

B. Active Conversation

By definition, once a conversation is initiated, an Open
Conversation Space should allow the overhearing of this
conversation by the other actors in that space (REQ2). Firstly,
they should be able to find out about the conversation either
by deliberately (manually) looking for it or by automatic

detection. In a traditional office setting an example of the
former is looking around actively, checking to see if people are
having a conversation. An example of the latter is detecting
a conversation because you hear people talk to each other or
see some people group together. When looking at detecting a
conversation in this fashion, it is important to note it happens
mostly subconsciously and unobtrusively. When you are work-
ing on a task and people talk to each other, you can continue
relatively uninterrupted while your mind automatically detects
whether the conversation is interesting to you. After detection
of the conversation the Open Conversation Space should allow
the actors to actively monitor the conversation (REQ3). In a
traditional office setting this would mean actively listening
to the conversation without actually joining. When actively
listening to the conversation an actor has access to nearly all
information about the conversation, so the things that are being
said, who are participating in the conversation and who else
is viewing the conversation. When not actively following a
conversation, more general information about the conversation
is picked up by the actor, like a phrase or a certain word.

Besides monitoring an active conversation, actors in an
Open Conversation Space should also be able to participate in
such a conversation (REQ4). People can become a participant
in a conversation (i) because they were one of the original
participants in a conversation, (ii) because they were invited
into a running conversation or (iii) because they actively joined
a conversation they overheard. In a traditional office setting
people are usually invited into the conversation by simply
being asked to do so by someone already participating. Ac-
tively joining a conversation yourself can happen in multiple
ways. Someone listening to the conversation can explicitly ask
whether he can join, but often people will join conversations
by just starting to speak. When someone participates in a
conversation he can influence the conversation. He can, for
example, contribute to the conversation or invite other people.
Next to this he can also suggest to move the conversation
to a separate office if the conversation is of a private nature,
effectively taking it out of the Open Conversation Space.

C. Finished Conversation

Because we define a conversation to be a synchronous
information exchange, by definition, it has to finish as well
since people cannot synchronously communicate indefinitely.
Therefore a conversation finishes when all participants stop
communicating synchronously (REQ5). This is however not
straightforward to detect. For instance, there is no definition
of a certain amount of time between messages indicating the
synchronous communication has ended. In a traditional office
setting participants not talking for a certain amount of time
and participants physically moving away from each other are
usually indicators that a certain conversation has ended. Later
on, it is possible for the same people to continue ”where they
left off”. This is however not the same conversation, but a
second conversation about a related subject since conversations
are synchronous exchanges of information.

When a conversation is finished however it does not cease



to exist. In a traditional office setting people that participated
or overheard the conversation usually have a recollection
of the conversation while other people present in the office
during the conversation can have some knowledge about it as
well. Knowing about finished conversations has all benefits
of overhearing conversations except being able to join the
conversation since this is no longer possible.

III. RELATED WORK

Before we discuss Communico in the next section, we will
first discuss existing tools for communicating in a distributed
setting and compare these with Communico based on whether
and how they implement the set of requirements. Firstly, Com-
munico is a Virtual Open Conversation Space, so it is different
from tools which are not suitable to have conversations and
tooling with which it is not possible to overhear conversations
of others. As explained in section 1, an information exchange
can only be considered a conversation when it is both syn-
chronous and directed at one or more participants. Therefore
tooling not suitable for synchronous communication (e.g. e-
mail and forums) or directed communication (e.g. forums
and Twitter [39]) does not support having conversations and
therefore fulfills none of the five requirements. Other tools
which do support having conversations do not support the
detection and monitoring of these conversations by others
(e.g. Instant Messaging, telephone and Google Wave [40]) and
therefore are not Virtual Open Conversation Spaces as well
since they do not implement REQ2 and REQ3.

There are also existing solutions which fulfill all of the
five requirements. We have performed a comparison between
a number of these by comparing how the different tools
implement the requirements. An overview of the comparison
is shown in table I (REQ4 and REQ5 are omitted in this
table because we could not define an orthogonal subdivision
in which these requirements are divided). In this table it
can be seen that the existing solutions mainly differ in three
ways. Firstly, most of the tools on the list support indirect
conversation initiation: they support starting a conversation by
creating a topic. In three of these tools however, conversations
can be initiated directly by starting to talk to a specific person.
Secondly, while all the Virtual Open Conversation Spaces we
looked at support manual detection of ongoing conversations,
only Reachout also supports the automatic detection of the

conversations by subscribing to certain topics. Finally, with
the exception of Internet Relay Chat and VirtualOffice, all
solutions make the conversations explicit. In IRC and Virtu-
alOffice however, all messages are shown in sequential order
irrespective of what conversation they belong to.

Based on this analysis we have implemented Communico
making use of the strengths of the solutions we looked at.
In the design of Communico we have attempted to mimic
the traditional office setting as much as possible because it
is clear that collocated Software Engineering has awareness
information benefits and therefore it seems like a good starting
point to mimic this as much as possible [41]. So in comparison
with the solutions compared in table I we have made the
following design decisions: Firstly, we have chosen to use
direct conversation initiation by starting to talk with one or
more specific people because in our opinion this is the most
common way to initiate a conversation in a traditional office
setting. Secondly, we have chosen to support both the manual
and the automatic detection of conversations because both
occur in the traditional office setting as well: people both
overhear conversations by actively looking around and by
being triggered by a certain event while carrying out another
task. Finally we have chosen to make conversations explicit.
We did this because using implicit conversations, like in IRC,
limits the creation of a structured and logical layout for group
discussions [40]. In a co-located setting, conversations are
also sequential in nature, but other indicators help to more
easily identify conversations as such (e.g. the placement of
individuals in the room and the people at whom people are
looking). When only the sequential ordering of messages is
known, all that is left to identify conversations is semantics.
Because of this it requires more effort to be aware what
conversations are going on.

We chose to develop and subsequently evaluate Communico
because it is conceptually different from the existing techno-
logical solutions. We will provide a detailed description of
Communico in the next section.

IV. COMMUNICO

In this section we will discuss the improved version of
Communico; a Virtual Open Conversation Space we developed
(See [42] for a video demonstration). To do this, we will first
briefly look at the technical implementation of Communico.

TABLE I
COMPARISON OF VIRTUAL OPEN CONVERSATION SPACES

REQ1: Initiating REQ2: Detecting REQ3: Monitoring
Direct Indirect Manual Automatic Explicit Implicit

Internet Relay Chat (IRC) X X X X
VirtualOffice [33] X X X X
GroupBanter [34] X X X
Babble [27] X X X
Loops [35] X X X
ReachOut [36] X X X X
Threaded Chat [37] X X X
OpenMessenger [38] X X X
Communico X X X X



Following this we will discuss how Communico implements
the requirements of an Open Conversation Space which we
discussed in section 2.

A. Technical Implementation

Communico uses Microsoft Office Communications Server1

to support having conversations in a distributed setting. The
Office Communications platform supports text-based com-
munication (Instant Messaging), audio conferencing, video
conferencing and screen sharing. We chose to use this platform
because it supports all these features and because its popularity
in industry makes it easier to find a setting for performing a
case study. Because we build upon an existing communication
solution rather than develop our own, Communico can grad-
ually be introduced into a business. This is because people
using Communico and people using Office Communicator can
directly communicate with each other. This does imply that
only conversations in which at least one participant is using
Communico are visible in the Open Conversation Space and
only people using Communico have access to this space. Even
so, allowing for gradual introduction of a communication tool
into a business environment eases its introduction.

In Communico we chose to initially only incorporate the
IM-conversations in the Open Conversation Space. We did
this for three reasons. Firstly, an Instant Messaging tool sup-
ports having conversations because it allows for synchronous
communication2 which is directed at the other participants in
the conversation. Secondly, textual information exchange is,
in comparison with audio and video, much easier to record,
analyze and search through in an automated fashion. Finally,
text based communication is commonly used to maintain
awareness information and is very simple to use [16]. So,
focusing on the IM-conversations seems like a good starting
point in creating a Virtual Open Conversation Space.

The technical infrastructure of Communico is shown in
figure 1. When using Office Communications Server as a
communication platform, a central server routes all commu-
nication and every user of the system runs a client (in this
case Office Communicator 2007 R2) to use the functionality
this server offers. A Communico client runs alongside Office
Communicator on the machine of everyone using Communico
and all these instances are connected to a central Communico
server. The Communico clients use the Office Communicator
Automation API to gather data about users and conversations
and send this information to the central Communico server.
This server maintains a complete model of all data and sends
updates to all clients when this model changes. These updates
can cause the Communico clients to update its user interface
or initiate a certain action, via the Office Communicator
Automation API, like inviting someone into a conversation.

1http://www.microsoft.com/communicationsserver/en/in/
2We regard this as synchronous because the sending and receipt of messages

can be regarded as instantaneous.

Fig. 1. Technical Infrastructure

B. A Virtual Open Conversation Space

In this section, we will discuss Communico by going over
the requirements of an Open Conversation Space discussed
in the previous section. Uninitialized Conversation

In Communico conversations are initiated by double
clicking the name(s) of the user(s) you wish to start a
conversation with (REQ1). Because this is a direct way to
initiate a conversation it mimics walking over to someone
and starting to talk to him or her in a co-located setting.
We chose this method of conversation initiation for two
reasons. Firstly, in our opinion this is the most common way
to initiate a conversation in a co-located situation. Secondly,
starting a conversation in this fashion is common practice
in IM-tools including Office Communicator. The choice for
direct conversation initiation, however, does not rule out the
introduction of an indirect form of conversation initiation (for
instance topic based) in the future.

Active Conversation
In the section about the requirements of an Open

Conversation Space we discussed the three requirements of an
Open Conversation Space in relation to an active conversation.
Users should be able to find out about conversations (REQ2),
listen to conversations of others (REQ3) and become part
of a conversation (REQ4). We discussed that the two ways
of finding out about a conversation are actively looking for
it (i.e. by looking around in a traditional office setting) and
automatic detection (i.e. subconsciously picking up on an
interesting conversation while working). In Communico the
former is implemented in the active conversations tab depicted
in figure 2. On this tab a list is shown of all conversations
that are currently going on between the members of the
project team. For each conversation basic information is
shown like the participants, the last thing said, and the
number of viewers. A viewer of a conversation is a user that
is looking at the detailed information about that conversation
(discussed later). The list of active conversations can also



Fig. 2. Active Conversations Tab

Fig. 3. Desktop Alert

be sorted (e.g. the conversation with the latest message on
top) and filtered (e.g. only show conversations containing a
certain word or phrase) to help the user discover interesting
conversations. Communcio implements the second way of
finding out about conversations, the automatic detection
of conversations, with the use of desktop alerts (Figure
3). Users can configure Communico to display a desktop
alert if an active conversation meets a certain criteria to
prevent information overload. Supported criteria for showing
desktop alerts are: that a conversation (i) contains a certain
key word, (ii) has a specific participant, (iii) has a certain
number of viewers or (iv) is running for a certain amount of
time. A disadvantage of using desktop alerts is that active
notification by the system potentially disrupts the users [43],
[44], [45]. However, we argue this is also the case in the
traditional co-located setting, as people are also disrupted by
conversations that are in fact not that interesting to them. The
goal of the configurable criteria is to emulate the implicit
thought process in the traditional office setting. Besides this,
the field study reported in Iqbal et al. [46] also indicates
the awareness gained could be worth the added disruptions
caused by the desktop alerts.

After a user finds out about a conversation that is potentially

interesting he can, like in a traditional office setting, start
to actively listen to the conversation. In Communico this is
done either by double clicking the conversation in the active
conversation tab or by clicking the desktop alert about the
conversation. When this is done a window showing more
detailed information about that conversation, like shown in
figure 4, is opened. When viewing the detailed information
about the conversation a user can also see everything that has
been said in the conversation and information regarding the
involvement of others in it. We choose to show the involvement
of others here because (i) we regard it an integral part of a
conversation, (ii) involvement information is also available in
the traditional office setting and (iii) a number of sources (e.g.
[37], [47]) also report on its importance. In the traditional
office setting the involvement of someone in a conversation
depends on how aware he is of the conversation and whether or
not he participates in it. Therefore, we show all people that are
currently participating and all people that are currently moni-
toring the conversation (by accessing the detailed information).
Next to this, we also show who monitored and participated in
the conversation in the past because we think past involvement
is also important when monitoring a conversation. By imple-
menting these levels of involvement, Communico conforms to
the model of conversation involvement proposed in Dullemond
et al. [22].

People can join a conversation either by being invited by
people already participating or by viewing the conversation
and requesting to join it by clicking the join button. When such
a join request is accepted by the owner of the conversation, the
user changes from merely viewing the conversation to being
a participant, resulting in the conversation window depicted



Fig. 4. Conversation Window - Viewing

in figure 5. As a participant, the user can actively contribute
to the conversation. Next to this, all participants also have
the option to make a conversation private, effectively hiding
the content from all users that are not participating in the
conversation. This functionality was added to mimic going to a
separate office to talk in private in the traditional office setting.

Finished Conversation
A conversation is a synchronous exchange of information

and therefore its explicit end is when the synchronous
communication ceases. This can however be difficult to
detect because it can be unclear whether the synchronous
communication has ended or all participants are simply
thinking about their next reply. Because a conversation
requires two or more people to communicate, in Communico
we chose to define the end of a conversation as the moment
the total number of participants in the conversation becomes
one or zero (REQ5). So when two people participate in a
conversation and one of them leaves it, either by clicking
leave conversation or closing the conversation window,
the conversation finishes. When a conversation finishes it
becomes immutable: people can no longer join and as a
result no content can be added to the conversation as well.
An example of a finished conversation is shown in figure 6.

Finished conversations are not discarded, but instead made
available in Communico’s finished conversations tab because
past conversations are a valuable source of information [48].
In a normal office setting team members each have access to
part of this information, namely the conversations which they

Fig. 5. Conversation Window - Participating

participated in or overheard. With Communcio however, team
members have access to all conversations that occurred in the
Open Conversation Space, can access them in full detail and
can automatically search through them as well.

V. LIMITATIONS AND FUTURE WORK

Privacy is often an issue in awareness sharing tools [49]. In
Communico we primarily tried to deal with this by mimicking
the co-located setting. Firstly, we only show information
which is also available in the co-located setting. Secondly,
we show who is viewing what information about you to
prevent people feeling spied on. Finally, we also make it
possible to have private conversations giving users control
about the visibility of their interactions. Another limitation
of Communico has to do with the fact only IM-conversations
are part of the Open Conversation Space. When a subgroup
of the team members is co-located they will often use
verbal communication, effectively bypassing Communico. So,
conversations that occur in this fashion are only visible to the
people present in the same office as where the conversation
occurs but not to people located remotely. A final limitation
we will discuss concerns that for conversations to occur
people have to be working at the same time. Therefore,
in settings where colleagues have no overlap in working
time, it is not possible for them to have conversations. With
Communico, however, it is possible to look at the finished
conversations of people working in a different time zone to
acquire information. To communicate with each other they



Fig. 6. Finished Conversation Window

should use other, asynchronous, means of communication.
This is however not a limitation of Communico in particular
but of Open Conversation Spaces in general. If you work in a
traditional office setting and one team member works during
the day while the other works at night, they also cannot
communicate directly and have to revert to leaving notes as
well.

Based on the requirements of an Open Conversation
Space we have identified several opportunities to improve
Communico. Firstly, topic based conversation initiation could
be added. Secondly, the conversations people see could be
restricted by defining some sort of ”virtual office walls” to
help prevent an overload of information. Thirdly, semantics of
conversations could be researched to be able to automatically
annotate conversations and help both the detection and
monitoring of conversations. Fourthly, research about what
other actions to influence conversations is interesting as
well. An example of such an action could be notifying
others about a conversation you are currently having. Finally,
research could be done about detecting when a conversation
finishes. As mentioned earlier, we considered the likelihood
of finding a suitable setting for a case study an important
factor in designing our architecture. Therefore it is clear that
we consider performing an industrial case study to evaluate
Communico an important next step.

VI. CONCLUSION

In this paper we have explained the value of Open Con-
versations Spaces and have defined five requirements such a
space should fulfill:

REQ1. Facilitate starting conversations
REQ2. Facilitate detecting active conversations
REQ3. Facilitate monitoring active conversations
REQ4. Facilitate participating in conversations
REQ5. Facilitate the finishing of conversations

Subsequently we have presented Communico which is a
Virtual Open Conversation Space and therefore implements
these requirements in a distributed setting. Finally, we have
shown that Communico is different from existing tooling in
the way it implements the requirements and have discussed
opportunities for improvements. The main contributions of this
paper are:

• A complete set of requirements an Open Conversation
Space should fulfill

• The presentation of a novel tool which implements these
requirements in a distributed setting

• A comparison of this tool with existing Virtual Open
Conversation Spaces

The most prominent next step in this research is to evaluate
Communico by measuring its value in a distributed industrial
case setting.

REFERENCES

[1] E. Carmel, Global software teams: collaborating across borders and
time zones. Upper Saddle River: Prentice Hall PTR, 1999.

[2] J. Herbsleb and D. Moitra, “Guest Editors’ Introduction: Global Soft-
ware Development,” IEEE Software, vol. 18, no. 2, pp. 16–20, 2001.

[3] J. Herbsleb, “Global Software Engineering: The Future of Socio-
technical Coordination,” in Proceedings of the IEEE 2007 Workshop
on the Future of Software Engineering. IEEE Computer Society Press,
2007, pp. 188–198.

[4] The Dieringer Research Group Inc., “Telework Trendlines 2009: A
Survey Brief by WorldatWork,” 2009.

[5] R. Grinter, J. Herbsleb, and D. Perry, “The geography of coordination:
dealing with distance in R&D work,” in Proceedings of the ACM
SIGGROUP 1999 International Conference on Supporting Group Work.
ACM Press, 1999, pp. 306–315.

[6] D. Damian and D. Moitra, “Guest Editors’ Introduction: Global Software
Development: How Far Have We Come?” IEEE Software, vol. 23, no. 5,
pp. 17–19, 2006.

[7] C. Ebert and P. De Neve, “Surviving global software development,”
IEEE Software, vol. 18, no. 2, pp. 62–69, 2001.

[8] J. Herbsleb and R. Grinter, “Architectures, coordination, and distance:
Conway’s law and beyond,” IEEE Software, vol. 16, no. 5, pp. 63–70,
1999.

[9] E. Carmel and R. Agarwal, “Tactical approaches for alleviating distance
in global software development,” IEEE Software, vol. 18, no. 2, pp.
22–29, 2001.

[10] I. Harpaz, “Advantages and disadvantages of telecommuting for the in-
dividual, organization and society,” International Journal of Productivity
and Performance Management, vol. 51, no. 2, pp. 74–80, 2002.

[11] B. Hesse and C. Grantham, “Electronically Distributed Work Communi-
ties: Implications for Research on Telework,” Internet Research, vol. 1,
no. 1, pp. 4–17, 1991.

[12] J. Pratt, “Myths and Realities of Working at Home: Characteristics of
Homebased Business Owners and Telecommuters,” National Technical
Information Service, Tech. Rep., 1993.

[13] K. Schmidt, “The Problem with ‘Awareness’: Introductory Remarks on
‘Awareness in CSCW’,” Computer Supported Cooperative Work, vol. 11,
no. 3-4, pp. 285 – 298, 2002.



[14] A. Syri, “Tailoring cooperation support through mediators,” in Pro-
ceedings of the 1997 European Conference on Computer Supported
Cooperative Work. Kluwer Academic Publishers, 1997, pp. 157–172.

[15] P. Dourish and V. Bellotti, “Awareness and Coordination in Shared
Workspaces,” in Proceedings of the ACM 1992 Conference on Computer
Supported Cooperative Work. ACM Press, 1992, pp. 107–114.

[16] C. Gutwin, R. Penner, and K. Schneider, “Group awareness in distributed
software development,” in Proceedings of the ACM 2004 Conference on
Computer Supported Cooperative Work. ACM Press, 2004, pp. 72–81.

[17] J. Fogarty, S. Hudson, C. Atkeson, D. Avrahami, J. Forlizzi, S. Kiesler,
J. Lee, and J. Yang, “Predicting human interruptibility with sensors,”
ACM Transactions on Computer-Human Interaction, vol. 12, no. 1, pp.
119–146, 2005.

[18] J. Herbsleb and A. Mockus, “An empirical study of speed and communi-
cation in globally distributed software development,” IEEE Transactions
on Software Engineering, vol. 29, no. 6, pp. 481–494, 2003.

[19] T. Allen, Managing the flow of technology. MIT press, 1977.
[20] J. Olson and S. Teasley, “Groupware in the wild: lessons learned from a

year of virtual collocation,” in Proceedings of the ACM 1996 Conference
on Computer Supported Cooperative Work. ACM Press, 1996, pp. 419–
427.

[21] D. Perry, N. Staudenmayer, and L. Votta, “People, organizations, and
process improvement,” Software, IEEE, vol. 11, no. 4, pp. 36 –45, Jul.
1994.

[22] K. Dullemond, B. van Gameren, and R. van Solingen, “Virtual open
conversation spaces: Towards improved awareness in a GSE setting,” in
Proceedings of the 2010 International Conference on Global Software
Engineering, 2010, pp. 247–256.

[23] J. Espinosa and E. Carmel, “The impact of time separation on coor-
dination in global software teams: a conceptual foundation,” Software
Process: Improvement and Practice, vol. 8, no. 4, pp. 249–266, 2003.

[24] S. Greenberg and C. Gutwin, “A descriptive framework of workspace
awareness for real-time groupware,” Computer Supported Cooperative
Work, vol. 11, no. 3-4, pp. 411–446, 2002.

[25] Y. Ren and R. Kraut, “A Simulation for Designing Online Com-
munity: Member Motivation, Contribution, and Discussion Modera-
tion.” Manuscript in preparation: Retrieved from: http://www.cs.cmu.
edu/∼kraut on June 2nd 2011.

[26] A. Webber, “What’s so new about the new economy?” Harvard Business
Review, 1993.

[27] T. Erickson, D. Smith, W. Kellogg, M. Laff, J. Richards, and E. Bradner,
“Socially translucent systems: social proxies, persistent conversation,
and the design of babble,” in Proceedings of the SIGCHI 1999 Confer-
ence on Human Factors in Computing Systems. ACM Press, 1999, pp.
72–79.

[28] E. Wynn, “Office conversation as an information medium,” Ph.D. thesis,
University of California, Berkely, 1979.

[29] S. Greenberg and M. Rounding, “The notification collage: posting
information to public and personal displays,” in Proceedings of the
SIGCHI 2001 Conference on Human Factors in Computing Systems.
ACM Press, 2001, pp. 514–521.

[30] M. Sosa, S. Eppinger, M. Pich, D. McKendrick, and S. Stout, “Factors
that influence technical communication in distributed product develop-
ment: an empirical study in the telecommunications industry,” IEEE
Transactions on Engineering Management, vol. 49, no. 1, pp. 45–58,
2002.

[31] K. R. McCord, “Managing the integration problem in concurrent engi-
neering,” Master thesis, Massachusetts Institute of Technology, 1993.

[32] R. Kraut, R. Fish, R. Root, and B. Chalfonte, “Informal communication
in organizations: Form, function, and technology,” in Human reactions to
technology: Claremont Symposium on Applied Social Psychology. Sage
Publications, 1990, pp. 145–199.

[33] G. Sharma, G. Shroff, and P. Dewan, “Workplace collaboration in a
3d virtual office,” in VR Innovation (ISVRI), 2011 IEEE International
Symposium on. IEEE, pp. 3–10.

[34] K. Inkpen, S. Whittaker, M. Czerwinski, R. Fernandez, and J. Wallace,
“GroupBanter: Supporting Serendipitous Group Conversations with IM,”
in Proceedings of the 2008 International Conference on Collaborative
Computing: Networking, Applications and Worksharing. Springer,
2008, pp. 485–498.

[35] T. Erickson, W. Kellogg, M. Laff, J. Sussman, T. Wolf, C. Halverson,
and D. Edwards, “A persistent chat space for work groups: the design,
evaluation and deployment of loops,” in Proceedings of the ACM 2006
Conference on Designing Interactive systems. ACM Press, 2006, pp.
331–340.

[36] A. Ribak, M. Jacovi, and V. Soroka, “Ask before you search: peer
support and community building with ReachOut,” in Proceedings of
the ACM 2002 Conference on Computer Supported Cooperative Work.
ACM Press, 2002, pp. 126–135.

[37] M. Smith, J. Cadiz, and B. Burkhalter, “Conversation trees and threaded
chats,” in Proceedings of the ACM 2000 Conference on Computer
Supported Cooperative Work. ACM Press, 2000, pp. 97–105.

[38] J. Birnholtz, C. Gutwin, G. Ramos, and M. Watson, “OpenMessenger:
gradual initiation of interaction for distributed workgroups,” in Proceed-
ings of ACM CHI 2008 Conference on Human Factors in Computing
Systems. ACM Press, 2008, pp. 1661–1664.

[39] A. Java, X. Song, T. Finin, and B. Tseng, “Why we twitter: understand-
ing microblogging usage and communities,” in Proceedings of the 2007
Workshop on Web Mining and Social Network Analysis. ACM Press,
2007, pp. 56–65.

[40] G. Trapani and A. Pash, “The complete guide to Google Wave,” 2008,
Retrieved from: http://completewaveguide.com on February 24th 2010.

[41] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood, “Using developer
activity data to enhance awareness during collaborative software devel-
opment,” Computer Supported Cooperative Work (CSCW), vol. 18, pp.
509–558.

[42] K. Dullemond and B. van Gameren, “Communico: overhearing conver-
sations in a virtual office,” in Proceedings of the ACM 2011 conference
on Computer supported cooperative work. ACM, 2011, pp. 577–578.

[43] S. T. Iqbal and E. Horvitz, “Disruption and recovery of computing tasks:
field study, analysis, and directions,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, ser. CHI ’07, 2007,
pp. 677–686.

[44] E. Cutrell, M. Czerwinski, and E. Horvitz, “Notification, disruption,
and memory: Effects of messaging interruptions on memory and perfor-
mance.” IOS Press, 2001, pp. 263–269.

[45] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task
switching and interruptions,” in Proceedings of the SIGCHI conference
on Human factors in computing systems, ser. CHI ’04, 2004, pp. 175–
182.

[46] S. T. Iqbal and E. Horvitz, “Notifications and awareness: a field study of
alert usage and preferences,” in Proceedings of the 2010 ACM conference
on Computer supported cooperative work, ser. CSCW ’10, 2010, pp.
27–30.

[47] M. Tran, Y. Yang, and G. Raikundalia, “Supporting awareness in instant
messaging: an empirical study and mechanism design,” in Proceedings
of the 2005 Australian Conference on Computer Human Interaction:
Citizens Online: Considerations for Today and the Future. Computer-
Human Interaction Special Interest Group of Australia, 2005, pp. 1–10.

[48] T. Niinimaki and C. Lassenius, “Experiences of instant messaging
in global software development projects: A multiple case study,” in
Proceedings of the 2008 International Conference on Global Software
Engineering. IEEE Computer Society Press, 2008, pp. 55–64.

[49] S. E. Hudson and I. Smith, “Techniques for addressing fundamental
privacy and disruption tradeoffs in awareness support systems,” in
Proceedings of the 1996 ACM conference on Computer supported
cooperative work, ser. CSCW ’96. New York, NY, USA: ACM, 1996,
pp. 248–257.


