
Collaboration should become a first-class citizen in
support environments for software engineers

Kevin Dullemond
Delft University of Technology

IHomer
k.dullemond@tudelft.nl

Ben van Gameren
Delft University of Technology

IHomer
b.j.a.vangameren@tudelft.nl

Rini van Solingen
Delft University of Technology

Prowareness
d.m.vansolingen@tudelft.nl

Abstract—Much work has been done in developing Integrated
Development Environments (IDEs) for supporting software engi-
neers in their isolated programming tasks. Software Engineering
however, is primarily a collaborative activity in which communi-
cation, coordination and cooperation with colleagues is essential.
Supporting this collaboration is often overlooked in support
environments while it is in fact highly beneficial for Software
Engineering teams in general and distributed teams in particular.
Progress has been made in extending existing IDEs with func-
tionality for supporting the collaborative activities in Software
Engineering, however such environments are focused primarily
on the programming task with collaboration functionality added
to that. In this paper we argue the case that collaboration
should be at the core of Integrated Collaborative Development
Environments by showing exhibits that Software Engineering is
primarily a collaborative activity, discussing limitations in the
support for this in existing solutions and discussing our own
approach in dealing with these limitations.

I. INTRODUCTION

In 2002 Booch and Brown [1] emphasized the importance
of a Collaborative Development Environment (CDE) defined
as: “a virtual space wherein all the stakeholders of a project
- even if distributed by time or distance - may negotiate,
brainstorm, discuss, share knowledge, and generally labor
together to carry out some task, most often to create an exe-
cutable deliverable and its supporting artifacts”. They argue
that [1]: (i) effective teamwork is an essential part of every
nontrivial Software Engineering effort and (ii) collaborative
capabilities are essential to support these teams, particularly
as team sizes get smaller while team interaction becomes more
geographically dispersed. They conclude that CDEs are an
ideal way to get people to work together effectively.

Since Booch and Brown’s paper, the importance of CDEs
has only increased because software engineers work more and
more dislocated from each other due to the globalization of
business [2], [3], [4] and the rising popularity of working from
home [5]. However, advances have also been made in the area
of CDEs, for example by IBM with Rational Team Concert
[6] which extends the IDE with awareness information and
collaboration functionalities such as status indicators of team
members and direct communication options. However, while
providing support for distributed collaboration, such an ap-
proach is inherently focused on the programming perspective
and merely adds collaborative features to existing individual
functionalities. In other words the core of the solution revolves

around the individual programming task while the team and
the collaboration within the team is secondary. According to
Sengupta et al. [7]: “Most of the work in the CDE domain
till date has focused on collaborative coding”. We argue
the next step should be focusing on Collaborative Software
Engineering.

However, achieving collaboration support for software de-
velopment by extending existing solutions is difficult. Sarma
agrees and states [8]: “To create intrinsic collaboration sup-
port for software development, researchers need to reevaluate
the traditional development practices to design development
tools from the ground up to truly support collaboration”. Next
to this, Gerald Weinberg [9] has noted that programming is
ultimately a human activity and studies by DeMarco and Lister
[10] suggest that on large projects typical developers spend
about 70% of their time working with others. So, effective
communication plays a key role in software development [11].
Therefore we argue useful insights into how to best support
Software Engineers can be identified by creating a CDE which
has support for inter-personal collaboration at its core as op-
posed to support for the individual programming task. Because
such an approach is contradictionary to how most solutions
attempt to support collaborative Software Engineering at the
moment, the goal of this paper is:

To argue that collaboration should become a first-class citizen
in support environments for Software Engineers.

To do this we have structured the paper as follows. First, in
section II we discuss how Software Engineering is an inherent
collaborative and human activity and why this implies the most
important thing to support is collaboration. Following this in
section III we give an overview of a selection of existing
solutions to support collaborative Software Engineering by
looking at a number of reviews of the current state of practice.
In this analysis we identify a number of limitations of the
current solutions and in section IV we discuss our approach
in resolving the limitations by the creation of a collaborative
environment called Iris: an extensible communication platform
bootstrapped and created by and for a group of fully distributed
Software Engineers. Finally, we summarize our work and
discuss further research possibilities in section V.



II. SOFTWARE ENGINEERING: A COLLABORATIVE
ACTIVITY

In this section we present and defend the thesis: “Collabora-
tion is essential for Software Engineering teams and therefore
also for support environments for them”

We first discuss existing research on the collaborative and
social aspects of Software Engineering. A number of sources
have reported on this. Firstly, Weinberg [9] is generally con-
sidered a pioneer in recognizing that software development
is something done by human beings and the implications
of that. A significant portion of his work is focused on
re-engineering the software development processes from a
“people empowering point of view”. Secondly, DeMarco and
Lister [10], Perry et al. [12] and Jones [13] are examples
of studies on the amount of time spent on communication
and collaboration with others. In the study of DeMarco and
Lister [10] they report that on large projects typical developers
spend about 70% of their time working with others. Perry
et al. [12] report that in their study over half of developers’
time was spent in interactive activities. Jones [13] reports that
team activities account for about 85% of the costs of large
software systems. Thirdly, Strubing [14] has also performed
a study in this area in which he peformed two series of
experiments. In the first series, he conducted 10 open-ended
interviews and one group discussion; in the second series,
he conducted 25 interviews with programmers and two other
experts. He found that programmers perform four activities:
(i) coding, (ii) organizing their working space and process,
(iii) representing and communicating design decisions and
ideas, and (iv) communicating and negotiating with various
stakeholders. So three of the four core daily activities Strubing
found are activities with a significant collaborative aspect.
He concludes [14]: “Being a sociologist, I have found that
designing software is a highly cooperative process”. Finally,
Booch and Brown [1] have also performed an experiment
to obtain a snapshot of the daily life of a developer which
confirms these findings. So, based on these studies, it seems
clear that social activities represent a considerable portion of
the average day of programmers.

Exhibit 1
Social activities represent a considerable portion of the average day
of software engineers Based on [9], [10], [14], [12], [1], [13]

Next we show further implications of this by discussing
how it is reflected in two movements in Software Engineering
which are currently quite popular: Global Software Engineer-
ing and Agile Software Development. In Global Software
Engineering (GSE) the software development process is dis-
tributed between several geographically dispersed locations
[15], [16], [17]. GSE is becoming more popular both due
to the globalization of business [2], [3], [4] and the rising
popularity of working from home [5]. The main challenges
that arise due to working dislocated from each other, have
to do with difficulties with communication, coordination and
control of the development process [18]. Extensive literature
exists which reports on the challenges. The most important

of these are: lack of informal communication [2], [19], [3],
[20], reduced hours of collaboration [21], [22], [23], [24],
communication delay [20], [25], [4], [15] and loss of cohesion
[2], [26], [4]. As a commonality between these challenges we
see that they all have to do with difficulties in collaboration,
which confirms our thesis that collaboration is essential in
Software Engineering.

Exhibit 2
The main challenges experienced in Global Software Engineering
are difficulties with collaboration
Based on [2], [19], [18], [3], [21], [22], [26], [20], [25], [15], [23],
[4], [24]

The second movement in Software Engineering we want
to use to illustrate the collaborative nature of Software Engi-
neering is the rising popularity of agile methods. In the last
twenty years many sources have reported on the development
of lightweight methodologies as a reaction to the inflexibility
of existing heavyweight methods [27], [28], [29], [30], [31],
[32], [33], [34]. Examples of these new methodologies are:

• Scrum [35], [36]
• eXtreme Programming [37], [38], [39], [40]
• Crystal methods [41], [42]
• Adaptive software development [43], [44], [28]
• Feature driven development [45], [46]
• Kanban [47]
After the development of these methodologies, in 2001,

seventeen prominent process methodologists held a meeting to
discuss future trends in software development. They noticed
their methods had many commonalities and defined a name
for methods of this kind: ”agile methods”. They formed the
”Agile Alliance” and wrote ”The agile manifesto” [48] in
which they defined four core values:

1) Individuals and Interactions over processes and tools
2) Working software over comprehensive documentation
3) Customer collaboration over contract negotiation
4) Responding to change over following a plan
We can see that these core values as well as a set of princi-

ples (see [48]) quite strongly have to do with collaboration
and communication. Agile methodologies focus on people
and their collaboration, both internally (with team-members)
and externally (with the end users). One of the core reasons
Agile Software Development has been so popular in practice
[49], [50] is this focus on collaboration. So, the popularity
and success of agile methods also help build our case that
collaboration is an important aspect of Software Engineering.

Exhibit 3
The popularity in practice of Agile Software Development is
grounded on its emphasis on people and their collaboration
Based on [27], [28], [29], [30], [48], [31], [32], [33], [34]

These three exhibits underline that collaboration is essential
in Software Engineering because (i) it represents a significant
portion of the daily activities of software engineers, (ii) a lack
of it leads to significant challenges (GSE) and (iii) strength-
ening it is the main benefit of Agile Software Development.
Because of the value in good collaboration and harm caused by
having insufficient collaboration it can be argued that adequate
support for collaboration is indispensable.



III. SUPPORT ENVIRONMENTS FOR SOFTWARE ENGINEERS

In the previous section we discussed how Software Engi-
neering is inherently a collaborative activity. It is precisely the
collaboration between team members through communication,
coordination and cooperation [51] which is the core of the
activity and therefore essential. In this section we discuss
existing support environments for software engineers, discuss
how these solutions include support for collaborative activities
and identify gaps (limitations) in the existing support for
collaborative Software Engineering.

Today, many environments exist to support software engi-
neers and most of these include at least some support for
collaboration as well. However, they emerged with different
initial goals in mind. Firstly Integrated Development Envi-
ronments (IDE) exist of which Eclipse1 and Microsoft Visual
Studio2 are probably the most well-known. IDEs evolved
from code editors which were extended with functionalities
software developers frequently use such as code repositories
and support for functional testing. Such environments however
are primarily individual productivity tools [1]. They have also
been combined with collaborative technologies such as code-
repositories and Instant Messaging platforms. Examples of
environments with these extensions are: Rational Team Con-
cert [6], Merlin Toolchain3, Team Foundation Server (TFS)
and Visual Studio Team System4. Similar to environments
which evolved from code editors, environments also exist
which evolved from being a host for projects. Examples
are SourceForge5, Launchpad6, Google Code7 and Microsoft
CodePlex8. These technologies have been extended with all
sorts of functionality regarding collaborative development such
as: code review support, build systems and bug tracking.
Thirdly, there exist systems created to centralize the building
of the system. Examples of such systems are Apache Con-
tinuum9, CruiseControl10 and Tinderbox11. These systems, in
turn, have also been extended with collaboration supporting
technologies such as scheduling software.

Some of the support environments discussed above are
considered by some to be Collaborative Development Envi-
ronments (CDEs). Lanubile et al. [52] discuss and compare
support of nine support environments they consider CDEs.
In another work Lanubile [53] indicates SourceForge is the
most popular CDE with over 170.000 hosted projects and
1.800.000 registered users. Looking at the functionality of the
discussed CDEs however, it can be seen that the “integration”
of collaborative functionalities is mostly limited to making
the functionality available in a single platform. Providing a

1http://www.eclipse.org
2http://msdn.microsoft.com/en-us/vstudio
3http://merlintoolchain.sourceforge.net
4http://www.microsoft.com/visualstudio/en-us/products/teamsystem
5http://sourceforge.net
6https://launchpad.net
7http://code.google.com
8http://www.codeplex.com
9http://continuum.apache.org
10http://cruisecontrol.sourceforge.net
11http://www.mozilla.org/projects/tinderbox

mailing list, message board or Instant Messaging is one thing,
but integrating it in the process is another. An example of
this is being able to start conversations based on and linked
to your current work context. With regard to integrations like
this there is still quite some work to be done in the field of
CDEs.

Limitation 1
Existing support environments for software engineers focus on the
individual programming task

In the CSCW (Computer Supported Collaborative Work)
community much research has been done about collaboration
and what information is essential to do this effectively. One of
the primary drivers in this research is the notion of awareness,
defined as: “An understanding of the activities of others which
provides a context for your own activity” [54]. Researchers
in the Software Engineering community have leveraged the
work done in the CSCW community to provide support for
software engineers as well. A number of studies has been done
to research the existing tool support for collaborative Software
Engineering (e.g. [55], [56], [52], [57], [7], [8]). Most of
these studies have focused on Global Software Engineering
which is appropriate because collaboration issues using tools
are much more apparent in an environment where the tool
is the primary (and sometimes only) way to carry out the
collaboration. One of the most striking outcomes of these
studies is that there exist many separate tools to support
collaborative Software Engineering but very little has been
done to integrate them. Portillo-Rodrı́guez et al. [55] for
example concludes: “although there are sufficient tools to
support most areas or processes in the software life cycle, there
is a lack of connection between the tools. Almost only when
using tools from the same company (i.e. IBM or Microsoft
tools), and only in some areas, is it possible to integrate the
different tools.”. Steinmacher et al. [56] agrees: “In general,
most part of the primary studies (79%) focuses on introducing
a new tool with some awareness support to GSE.”. In fact,
most of the integration in collaborative tools for Software
Engineering has been done in IDEs, code hosts and build
servers discussed in the previous paragraphs. Next to this, a
significant portion of these isolated single-purpose tools are
academic research tools and therefore less likely to be usable
in a industrial setting.

Limitation 2
Collaborative functionalities are often only available in isolated
(special purpose) environments

The second thing that stands out when looking at these
studies is that most of the surveyed tools are related to code
specific tasks [7]. Steinmacher et al. [56] states: “The main
focus is given to studies gathering information from source
code version management repositories, used to provide aware-
ness supporting both coordination and cooperation”. As we
just discussed in the previous section, Software Engineering is
primarily a collaborative activity so focusing more on support
for this is an important next step in the research in this area.



Limitation 3
Tools which support collaboration mainly focus on code related
collaboration

Finally, Steinmacher et al. [56] have also surveyed what
portion of the tools support coordination, cooperation and
communication. They conclude that the vast majority of the
work has revolved around supporting coordination and that in
particular support for communcation in CDEs is a: “fruitful
research topic” [56].

Limitation 4
Tools which support collaboration mainly focus on easing coordina-
tion. Support for communication and cooperation is supported less

It is important to try to resolve the limitations discussed
in this section because Software Engineering is a highly
collaborative activity as has been discussed in the previous
section. Additionally, providing improved support for col-
laborative Software Engineering is even more important for
supporting Global Software Engineering and Agile Software
Development, because of an increased dependence on support-
ing technologies for collaboration in the first case and because
of the increased focus on collaboration in the latter.

IV. OUR APPROACH

In this section we discuss our own approach in trying to
resolve the issues identified in the previous section through
the creation of Iris12. We do this to show our first steps in
actually implementing a CDE with support for inter-personal
collaboration at its core. First, we discuss the main objectives
we want to achieve and the reasoning behind these objec-
tives. Following this we discuss how we aim to reach the
objectives by describing the setting in which the solution will
be evaluated and the process we employ in developing and
evaluating the solution in that setting. Finally, we also discuss
initial results.

A. Objectives

The core idea behind of our approach is that Software Engi-
neering is primarily a collaborative activity and therefore sup-
port for communication, coordination and cooperation should
be the core of a support environment for Software Engineering.
The first limitation of existing support we discussed in the
previous section is that existing support primarily focuses on
the individual programming task. In our approach we will
focus primarily on creating a collaboration platform and only
secondarily support the individual programming task to try
and target this limitation. So, the environment we are creating
focuses on providing support for communication, coordination
and cooperation first. Subsequently, additional functionality
can be added to support the individual programming task
which can build on top of the collaborative functionality which
is the core of the system.

Secondly, we found that many of the solutions that support
sharing awareness between the members of the development

12Named after the Greek goddess Iris: messenger of the gods

team are not integrated. This integration is in fact valuable.
Sillito et al. [58] for example reports on an empirical study on
how programmers resolve change tasks and how tools support
them in answering questions they have in the process of
carrying out these tasks. They report that most of the tools that
they researched treat questions as if they are asked in isolation
while they often are, in fact, part of a larger process. Ex-
amples are asking questions on different levels of abstraction
and asking questions involving different information sources.
Because awareness questions are often part of a larger process,
involving a series of questions and activities that provide
context, it is often difficult for distributed software engineers
to obtain sufficient contextual awareness [59]. Therefore our
second objective is to provide all awareness needs of software
engineers in a single platform.

Thirdly, Sillito et al. [58] also state that even programs
that do support asking different questions generally fail at
combining the information in a useful way and merely report
the information in isolation as largely undifferentiated and
unconnected lists. Because of this we also find it important
to enable the integration of the awareness information from
different sources. Therefore our third objective is to provide
support for truly integrating information from different sources
and to be able to utilize this information to support the
software engineer.

To summarize, our core objectives are the following:
1) Make collaboration the core of the support environment
2) Support all awareness needs of software engineers in a

single platform
3) Enable integration of the awareness information from

different information sources
Out of these objectives, Objective 1 is intended to deal with

Limitation 1 from the previous section while Objectives 2
and 3 are intended to deal with Limitation 2. Limitations 3
and 4 have to do with restrictions to code related tasks and
coordination respectively. We will deal with these limitations
by not imposing such restrictions.

B. Setting

The development and evaluation of the solution we are
creating is relatively unique because it is done at a com-
pany called IHomer, a Dutch Software Engineering company
founded in August of 2008, which is distributed in the true
sense of the word. In the company everyone is responsible for
all business decisions like the strategy, vision and core values,
in contrast with employees at ’regular’ companies who are
mainly responsible for the specific role they fulfill. At the
moment the company employs 19 participants.

In the company, physically distributed collaboration is com-
mon since home is the default location to work from (see
Figure 1 for a map showing the different primary working
locations of the IHomers). As we mentioned before, Software
Engineering settings where the software engineers are physi-
cally dislocated from each other is a particularly appropriate
setting for researching support for software engineers because
collaboration issues using tools are much more apparent in an



Fig. 1: Distribution of the IHomers

environment where these tools are the primary (and sometimes
only) way to carry out the collaboration. This makes the
company a particularly suitable setting for performing our
research. Additionally, the people are quite experienced with
dealing with the difficulties of working distributed from each
other and therefore have quite a good understanding of what
is needed to improve this situation. Because of this we can
closely collaborate with them to determine what functionality
is most beneficial to support first and what are good ways to do
this. Next to this, they also collaborate with us in realizing the
actual technical implementations which improves the quality
of the solutions and reduces the time it takes to realize these.
Finally, because they encounter the issues we are attempting to
solve in their daily work, the solutions will also benefit them
directly.

C. Process

We have chosen to use Scrum [35], [36] to implement
the Iris platform. This decision is based on the specific
characteristics of the project, the setting we are conducting
research in and our own experiences in the past. Firstly, the
process should be able to cope with uncertainty and changing
requirements since we are creating a genuinely novel product
and projects creating genuinely novel products are often faced
with uncertainty regarding both requirements and implemen-
tation technologies. Secondly, the process should involve the
intended users of the system as strongly as possible because
they are quite experienced with working in a distributed setting
since this is something they encounter on a daily basis. Finally,
the process should stimulate the usage of the solution by all
users by providing value as soon as possible. This is important
because in earlier research [60] we found that the value of
awareness sharing technology (CSCW groupware) is higher
when a larger portion of the team uses it and that this is often
a problem when introducing such tools in industry.

The Scrum agile methodology fulfills all these requirements.
Firstly, it is better able to cope with uncertainty and changing
requirements in projects than plan-driven approaches [61]. The

main ways in which this is accomplished is by acquiring rapid
feedback from the actual users of the system by using short
iterations, rapid deployment and working closely with the end
users. Secondly, Scrum advocates working closely with the
end users both to acquire feedback and to discover how value
can be created as quickly as possible resulting in increased
satisfaction and commitment.

Basically we are bootstrapping a solution for supporting
collaborative Software Engineering with a group of people
that have a particular need for this solution. We are using an
emergent process in doing so because we do not know up front
exactly what we need and we use the process to find out what
that is. The starting point we have in this approach to reach
the objectives we discussed earlier, is the following: Firstly,
we create native support for communication, cooperation and
coordination which can be utilized directly by the end users
of the system but also by extensions. We propose to use an
extensible plugin architecture, as can be found in the Jazz
and Eclipse IDEs, to facilitate this because using such an
approach will provide scalability and enable the utilization
of the large amount of existing supporting tools for software
engineers. Secondly, we create support for integrating these
different extensions with each other.

D. Initial results

The project has been running for half a year and the current
version is used by the majority of the IHomers in their daily
work. We have experienced we are using a suitable approach
by creating the solution iteratively in close collaboration with
the people actually using the software. A consequence of
working iteratively however is that functionality is added in
slices, we (together with our stakeholders) choose to add what
is most valuable to the users first. Therefore the core of the
system is still under development. We are however construct-
ing it bit by bit, each time utilizing the new functionality
immediately to provide value to the users.

In the rest of this section we will describe the current
version of the system (see figure 2 for a design impression
and in figure 3 for a screenshot). Firstly, all colleagues of a
user are available in a list with their personal photo. In this
list it is possible to see: (i) whether or not that colleague
is available, (ii) what his current activity is and (iii) what
location he is planning to work tomorrow. The reason the
stakeholders asked to support seeing tomorrow’s location is
that with that knowledge they can decide whether or not to
work physically co-located on the next day. They did not see
the need to also support the current location but we noticed
that users often embed this in their display name by appending
“@ [Location]”. So, it is likely support for this will be added
as well.

Secondly, we support communication between two or more
users using three different media: (i) Instant Messaging, (ii)
Audio and (iii) Audio/Video. Ongoing conversations are vis-
ible also to people not participating in the conversation in
a list on the right hand side of the screen. This is done to
give users insight in the conversations their colleagues are



Fig. 2: Design impression of Iris

Fig. 3: Screenshot of Iris

having (for more about technological support for overhearing
conversations see [62], [63], [64], [60]). Additionally users can
also configure how they like to be contacted on each of these
three mediums which is also shown in the user list. Firstly,
it is possible to block a medium altogether which will deny
all incoming conversation requests on that medium. Secondly,
it is possible to allow all incoming conversation requests
on a certain medium. This will result in the conversation
automatically starting when another users starts a conversation
on that medium. For instance when Bob has this setting
enabled for audio/video conversations and Alice starts such
a conversation with him Alice will automatically hear and
see Bob without going through a calling mechanism which
is common in existing tools for communication. Bob will also
immediately hear and see Alice. Finally, it is also possible
to allow conversations on a medium but only after explicit
acceptance. If Bob has this setting enabled and Alice contacts
him he will be able to hear and see Alice but she won’t be
able to see and hear him until he accepts the conversation
request. It is an interesting anecdote how this system came to

be. Initially we implemented a system in which on all media all
incoming conversation requests were automatically accepted.
We chose to do this because in a traditional co-located office
setting it is also normal for people to automatically see and
hear the people they are attempting to start a conversation
with, even if this attempt fails. However, after we deployed
this system, two users reported they were uncomfortable using
this system and would like the possibility to block incoming
conversations. The main issue they reported was that one of
their colleagues could look at them in their living room without
needing permission. It is noteworthy however, that since we
deployed the new system the majority of the users are using
the “allow all conversations”-setting for each of the media
during normal working hours.

Finally, the system supports the notion of groups. Within
an organization different groups exist, for example a group of
people working on a certain project. We use this notion to filter
the information a user sees to prevent information-overload.
In the current version of the system this is still quite limited
as it only influences the users and ongoing conversations you
see and gives access to a group-specific message board. When
you indicate you are currently active on a specific group (you
can only be active on one group at a time) you only see the
other members that are currently active on that group as well
and get access to a group specific message board. Groups are
hierarchal, so by being active on the company group a user
has access to the information of the entire company as well.

V. SUMMARY AND FUTURE WORK

In this paper we have argued that while most of the work in
the CDE domain till date has focused on collaborative coding,
the next step should be collaborative software engineering.
This is the main take-away from this paper.

We have argued that collaboration should be at the core of
support environments for software engineering by discussing
how Software Engineering is a human activity. We have shown
that two popular current movements in Software Engineering,
Global Software Engineering and Agile Software Develop-
ment, confirm the importance of collaboration in Software
Engineering as well. Subsequently, we discussed existing
support for software engineers, discussed on what areas the
solutions focus and identified limitations of these solutions.
Finally, we have described our own approach in targeting these
limitations in the Iris project and discussed the core ideas
behind our approach.

It is clear there is still a lot of work to be done for us to
reach the goals we have with our approach. At the moment
the most promising extensions to the system we have identified
are the following. Firstly, we are planning on incorporating the
concept of “virtual office walls” in the system. In a normal
office, office walls are used to control the information which is
available to a developer. A developer has different awareness
needs based on his activity and is able to control this, for
instance by moving to a different office. We feel this notion
is valuable in a support system for collaborative Software
Engineering as well. By allowing users to control their context



and, in turn, give them access to contextualized information
and support, we can remove friction and make their work more
efficient. The environment could for instance automatically
open the right IDE when a developer chooses to start working
on a specific code task or automatically open a document if
the users starts working on a task involving documentation.
Next to contextualizing the interface of the user based on
his own activity, providing access to the context of others
is valuable as well. For instance seeing who, at this very
moment, is working on a task which is related to yours, will
help in identifying additional opportunities for cooperation and
help in communicating with your colleagues in an unobtrusive
fashion.

The second direction for further work we have in mind,
concerns optimizing the users’ discovery of changes in their
work environment. If a developer is working in a traditional
co-located setting, he is not continuously scanning the entire
environment to stay up-to-date; doing so would be cognitively
exhausting. He will however likely notice when someone
enters the room: a change in the state of the environment. We
would like to explore the value of using a “delta mechanism”
in communicating environment related information to the user,
to keep the user up-to-date in an unobtrusive fashion.

Overall, we foresee a future in which support environments
for software engineers support collaboration as well as they
support the individual programming task today, resulting in
the “frictionless surface” envisioned by Booch and Brown
[1] which enables software engineers to unobtrusively carry
out their creative work.

REFERENCES

[1] Booch, G. and Brown, A.W, “Collaborative Development Environ-
ments,” in Advances in Computers. Elsevier, 2003, vol. 59, pp. 1 –
27.

[2] E. Carmel, Global software teams: collaborating across borders and
time zones. Upper Saddle River: Prentice Hall PTR, 1999.

[3] J. Herbsleb and D. Moitra, “Guest Editors’ Introduction: Global Soft-
ware Development,” IEEE Software, vol. 18, no. 2, pp. 16–20, 2001.

[4] J. Herbsleb, “Global Software Engineering: The Future of Socio-
technical Coordination,” in Proceedings of the IEEE 2007 Workshop
on the Future of Software Engineering. IEEE Computer Society Press,
2007, pp. 188–198.

[5] The Dieringer Research Group Inc., “Telework Trendlines 2009: A
Survey Brief by WorldatWork,” 2009.

[6] I. B. M. Corporation, “Rational team concert,” 2008. [Online].
Available: http://www-01.ibm.com/software/awdtools/rtc/

[7] B. Sengupta, S. Chandra, and V. Sinha, “A research agenda for dis-
tributed software development,” in Proceedings of the 28th international
conference on Software engineering, ser. ICSE ’06. ACM, 2006.

[8] A. Sarma, “A Survey of Collaborative Tools in Software Development,”
University of California, Irvine, Tech. Rep., 2005.

[9] G. Weinberg, The Psychology of Computer Programming. Dorset House
Publishing, 1989.

[10] T. DeMarco and T. Lister, Peopleware: productive projects and teams.
Dorset House Publishing, 1987.

[11] N. Ahmadi, M. Jazayeri, F. Lelli, and S. Nesic, “A survey of social
software engineering,” in Automated Software Engineering - Workshops,
2008. ASE Workshops 2008. 23rd IEEE/ACM International Conference
on, 2008, pp. 1 –12.

[12] D. Perry, N. Staudenmayer, and L. Votta, “People, organizations, and
process improvement,” Software, IEEE, vol. 11, no. 4, pp. 36 –45, Jul.
1994.

[13] C. Jones, Programming productivity. McGraw-Hill, Inc., 1986.

[14] J. Strubing, “Designing the working process: What programmers do
besides programming,” in User-Centered Requirements for Software
Engineering Environments. Springer, 1994.

[15] E. Conchúir, H. Holmström Olsson, P. Ågerfalk, and B. Fitzgerald,
“Exploring the Assumed Benefits of Global Software Development,”
in Proceedings of the IEEE 2006 International Conference on Global
Software Engineering. IEEE Computer Society Press, 2006, pp. 159–
168.

[16] D. Damian and D. Moitra, “Guest Editors’ Introduction: Global Software
Development: How Far Have We Come?” IEEE Software, vol. 23, no. 5,
pp. 17–19, 2006.

[17] R. Sangwan, M. Bass, N. Mullick, D. Paulish, and J. Kazmeier, Global
Software Development Handbook. Auerbach Publications, 2007.

[18] E. Carmel and R. Agarwal, “Tactical approaches for alleviating distance
in global software development,” IEEE Software, vol. 18, no. 2, pp.
22–29, 2001.

[19] J. Herbsleb and R. Grinter, “Architectures, coordination, and distance:
Conway’s law and beyond,” IEEE Software, vol. 16, no. 5, pp. 63–70,
1999.

[20] P. Ågerfalk, B. Fitzgerald, H. Holmström Olsson, B. Lings, B. Lundell,
and E. Conchúir, “A Framework for Considering Opportunities and
Threats in Distributed Software Development,” in Austrian Computer
Society, August 2005, pp. 47–61.

[21] R. Battin, R. Crocker, J. Kreidler, and K. Subramanian, “Leveraging
resources in global software development,” IEEE Software, vol. 18,
no. 2, pp. 70–77, 2001.

[22] L. Kiel, “Experiences in distributed development: a case study,” in
Proceedings of the 2003 International Workshop on Global Software
Development, 2003, pp. 44–47.

[23] H. Holmström Olsson, E. Conchúir, P. Ågerfalk, and B. Fitzgerald,
“Global Software Development Challenges: A Case Study on Temporal,
Geographical and Socio-Cultural Distance,” in Proceedings of the IEEE
2006 International Conference on Global Software Engineering. IEEE
Computer Society Press, 2006, pp. 3–11.

[24] B. Fitzgerald, P. Ågerfalk, H. Holmström Olsson, and E. Conchúir, “Ben-
efits of Global Software Development: The Known and Unknown,” in
Proceedings of the 2008 International Conference on Software Process.
Springer, 2008, pp. 1–9.

[25] J. Herbsleb, D. Paulish, and M. Bass, “Global software development at
siemens: experience from nine projects,” in Proceedings of the IEEE
2005 International Conference on Software Engineering. ACM Press,
2005, pp. 524–533.

[26] J. Herbsleb and A. Mockus, “An empirical study of speed and communi-
cation in globally distributed software development,” IEEE Transactions
on Software Engineering, vol. 29, no. 6, pp. 481–494, 2003.

[27] M. Fowler, “The new methodology,” 2000. [Online]. Available:
http://martinfowler.com/articles/newMethodology.html

[28] J. Highsmith, Agile Software Development Ecosystems. Addison
Wesley, 2002.

[29] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile software
development methods. Review and analysis. VTT Publications, 2002.

[30] J. Kalermo and J. Rissanen, “Agile software development in theory and
practice,” Master thesis, University of jyväskylä, 2002.

[31] D. Cohen, M. Lindvall, and P. Costa, “An introduction to agile methods,”
Advances in Computers, vol. 62, pp. 2–67, 2004.

[32] L. Williams, “A survey of agile development methodologies,” 2004. [On-
line]. Available: http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf

[33] M. Awad, “A comparison between agile and traditional software devel-
opment methodologies,” Honours program thesis, University of Western
Australia, 2005.

[34] T. Hataria, “The confounding world of process methodologies,” in Proc.
CCEC 2006 Symposium, 2006.

[35] K. Schwaber, “Scrum development process,” in OOPSLA’95 Workshop
on Business Object Design and Implementation, 1995.

[36] K. Schwaber and J. Sutherland, “Scrum guide,” Scrum Alliance, 2011.
[37] K. Beck, “Embracing change with extreme programming,” Computer,

vol. 32, no. 10, pp. 70–77, 1999.
[38] B. Beck, Extreme Programming Explained: Embrace Change. Addison-

Wesley, 1999.
[39] R. Glass, “Extreme programming: The good, the bad, and the bottom

line,” IEEE Softw., vol. 18, no. 6, p. 112, 2001.
[40] K. Beck, Extreme Programming Explained: Embrace Change, Second

edition. Addison-Wesley, 2004.



[41] A. Cockburn, Writing effective use cases, The crystal collection for
software professionals. Addison Wesley, 2000.

[42] ——, Agile software development. Addison-Wesley, 2002.
[43] J. Highsmith, “Messy, exiting, and anxiety-ridden: Adaptive software

development,” American Programmer, vol. 10, no. 1, 1997. [Online].
Available: http://www.jimhighsmith.com/articles/messy.htm

[44] ——, Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Addison Wesley, 2000.

[45] P. Coad, E. Lefebvre, and J. De Luca, Java Modeling in
Color with UML. Prentice Hall, 1999. [Online]. Available:
http://csis.pace.edu/ marchese/cs615sp/L2New/jmcuch06.pdf

[46] S. Palmer and M. Felsing, A Practical Guide to Feature-
Driven Development. Pearson Education, 2001. [Online]. Available:
http://goo.gl/FwXco

[47] D. Anderson, Kanban : Successful Evolutionary Change for Your
Technology Business. Blue Hole, 2010.

[48] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, “The agile manifesto,” The agile alliance, 2001. [Online].
Available: http://www.agileAlliance.org

[49] O. Salo and P. Abrahamsson, “Agile methods in European embedded
software development organisations: a survey on the actual use and
usefulness of Extreme Programming and Scrum,” Software, IET, vol. 2,
no. 1, pp. 58–64, 2008.

[50] Z. Hussain, W. Slany, and A. Holzinger, “Current state of agile user-
centered design: A survey,” in HCI and Usability for e-Inclusion, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2009, vol. 5889, pp. 416–427.

[51] H. Fuks, A. B. Raposo, M. A. Gerosa, and C. J. P. Lucena, “Applying
the 3c model to groupware development,” Int. J. Cooperative Inf. Syst.,
2008.

[52] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino, “Collaboration
tools for global software engineering,” Software, IEEE, vol. 27, no. 2,
pp. 52 –55, 2010.

[53] F. Lanubile, “Software engineering.” Springer-Verlag, 2009, ch. Col-
laboration in Distributed Software Development, pp. 174–193.

[54] P. Dourish and V. Bellotti, “Awareness and Coordination in Shared
Workspaces,” in Proceedings of the ACM 1992 Conference on Computer
Supported Cooperative Work. ACM Press, 1992, pp. 107–114.

[55] J. Portillo-Rodrı́guez, A. Vizcano, M. Piattini, and S. Beecham, “Tools
used in global software engineering: A systematic mapping review,”
Information and Software Technology, vol. 54, no. 7, pp. 663 – 685,
2012.

[56] I. Steinmacher, A. Chaves, and M. Gerosa, “Awareness support in
global software development: A systematic review based on the 3c
collaboration model,” in Collaboration and Technology, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2010, vol.
6257, pp. 185–201.

[57] M. Jiménez, M. Piattini, and A. Vizcaı́no, “Challenges and improve-
ments in distributed software development: a systematic review,” Adv.
Soft. Eng., vol. 2009, pp. 3:1–3:16, Jan. 2009.

[58] J. Sillito, G. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” Software Engineering,
IEEE Transactions on, vol. 34, no. 4, pp. 434–451, 2008.

[59] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood, “A review of
awareness in distributed collaborative software engineering,” Software:
Practice and Experience, vol. 40, no. 12, pp. 1107–1133, 2010.

[60] K. Dullemond and B. van Gameren, “An industrial evaluation of
technological support for overhearing conversations in global software
engineering,” in Proceedings of the 2012 International Conference on
Global Software Engineering. IEEE Computer Society Press, 2012,
pp. 65–74.

[61] ——, “Technological support for distributed agile development,” Master
thesis, Delft University of Technology, 2009.

[62] K. Dullemond, B. van Gameren, and R. van Solingen, “Virtual Open
Conversation Spaces: Towards Improved Awareness in a GSE Setting,”
in Proceedings of the 2010 International Conference on Global Software
Engineering. IEEE Computer Society Press, 2010, pp. 247–256.

[63] ——, “Overhearing Conversations in Global Software Engineering -
Requirements and an Implementation,” in Proceedings of the 2011
International Conference on Collaborative Computing: Networking,
Applications and Worksharing. IEEE, 2011.

[64] ——, “An Exploratory Study on Open Conversation Spaces in Global
Software Engineering,” in Proceedings of the 2011 International Con-
ference on Collaborative Computing: Networking, Applications and
Worksharing. IEEE, 2011.


