
Supporting Distributed Software Engineering in a Fully Distributed Organization

Kevin Dullemond
Delft University of Technology

IHomer
The Netherlands

k.dullemond@tudelft.nl

Ben van Gameren
Delft University of Technology

IHomer
The Netherlands

b.j.a.vangameren@tudelft.nl

Rini van Solingen
Delft University of Technology

The Netherlands
d.m.vansolingen@tudelft.nl

Abstract—Software engineering is increasingly carried out
in distributed settings. Software engineers are becoming more
nomadic in carrying out their work, working from the customer
location, the headquarters of their own company, their home,
or sometimes even from their holiday locations. Technological
support is needed to overcome the negative impacts of distance
that are introduced by this trend. The central theme in this
paper for supporting dislocated software engineers lies in
increasing their awareness level to a level similar to (or even
exceeding) what they experience in a co-located setting. In this
paper we present the context in which we are bootstrapping
a custom fit environment to support a team of fully dislocated
software engineers and the incremental process we use. By
working in this fashion we are discovering the requirements
to support fully distributed teams while at the same time
providing our setting with working solutions to help them with
their day to day challenges. Finally, this continuous practical
use also provides us with empirical data to validate the increase
in awareness levels of dislocated software engineers and helps
us in pinpointing important open research challenges.

Keywords-Computer-supported collaborative work; Dis-
tributed software development; Awareness; Tools and environ-
ments; Agile software development

I. INTRODUCTION

In this paper we present our approach to developing
and validating technological support for distributed software
engineers. The main objective of this paper is not so
much on presenting the solutions themselves, but mostly
on explaining the setting in which we are bootstrapping a
solution that fits a fully distributed setting, and the process
we use for doing so. The angle we take in this process
focuses on aiding distributed software engineers to acquire
a sufficient level of awareness independent on whether they
are co-located or dislocated. With awareness we mean ’an
understanding of the activities of others, which provides
a context for your own activities’ [1]. Having sufficient
awareness is essential because software engineering is an
inherently cooperative activity which requires potentially
many developers to coordinate their efforts to produce a
system. In order to do this there exists a need for a shared
understanding both about the project itself, like its state and
its artifacts, and about the people who work on the project,
like their activities, availability and interactions. Acquiring
and sustaining this shared understanding is far harder in a

distributed setting than in a co-located setting where it is
shared relatively passively and unobtrusively [2], [3]. This
is why we focus on facilitating this relatively passively and
unobtrusively in a distributed setting as well.

We approach this problem by creating a cross-platform,
web-based, extensible communication framework which we
co-develop with a Dutch software development company and
roll out in this setting as well. The company has the policy
for its developers to work from home as much as possible
and therefore is ideal for identifying the problems faced
when working distributed from your colleagues as well as
verifying the viability of the solutions produced. We build
this platform in two week iterations at the start of which
we decide what to build based on what the users find most
valuable and at the end of which we perform an evaluation.
From the first iteration onwards all the developers use the
system in their daily work which enables us to acquire
feedback quickly. Working in this fashion provides for a
potentially short turnaround time for research subjects as
identification, implementation and evaluation can be as quick
as a single iteration.

The rest of this paper is structured as follows. In section
II we discuss the growing popularity of distributed teams
and how collaborating in such teams is more difficult than
collaborating co-located. Next, in section III we discuss
which awareness needs are reasonably well supported by
existing solutions and which are not. Following this, in
section IV, we elaborate on the approach we take in this
research by discussing (A) the objectives and the reasoning
behind these, (B) the setting, (C) the process we use and
(D) the implementation of the system. Finally we present a
summary and discuss future work in section V.

II. AWARENESS IN DISTRIBUTED SOFTWARE
ENGINEERING TEAMS

Collaborative software engineering is increasingly con-
ducted outside of the traditional single office building for
instance in multiple dislocated office buildings or from
home. This is the result of the increasing globalization of
business [4], [5], [6] and the rising popularity of working
from home [7]. Advantages of the globalization of business
include: market-proximity [8], [9], reducing time-to-market



by working around the clock [4], [10], flexibility with
respect to business opportunities [4], [11], reducing costs
by delegating work to countries with low labor cost [12],
[9] and being able to fully utilize available resources [5],
[9]. Advantages of working from home include: increased
autonomy [13], increased flexibility [13], increased produc-
tivity [14], increased motivation [15] and improvement in
the quality of the environment [13].

In collaborative software engineering, having access to
the knowledge about the context in which you are working
(commonly referred to as ’awareness’ [3], [1]) is essential
to properly cooperate with others [3], [16]. Ko et al. [17]
reported the most frequently sought information by software
developers includes awareness about tasks, artifacts and co-
workers. For example, their results show that developers
frequently seek information about changes in artifacts they
depend on, the activities of their team members and informa-
tion relevant to their current task. In general there are three
strategies to keep people aware of important information
during collaboration: polling, alerts and peripheral awareness
[18]. Making the information available by polling involves
making the information accessible and allowing people to
explicitly poll this information on an as needed basis.
Using alerts involves intentionally interrupting people to
provide awareness information. The main benefit of using
alerts is that the recipient can be sure he is notified in
time of important information while the main disadvantage
is that it can disrupt the recipient from his current task.
The final strategy to make awareness information available
is peripheral awareness. This involves making information
available in the recipient’s periphery such that he has access
to the information without it distracting him.

In co-located teams all three of these strategies are used.
Important examples of methods of sharing awareness in such
a setting are meeting in the hallway [19], watching another
developers carry out their task [20] and observing changes
being made to artifacts [21]. Also, Perry et al. [22] reported
that developers spent over half their time interacting with
colleagues and that most of the communication is intended
to maintain awareness. In distributed teams using such
methods to maintain awareness is far more difficult. In their
review Omoronyia et al. [23] conclude that: “overall, the
literature suggests that many aspects of awareness that are
disseminated as a natural by-product of co-located working
are difficult to achieve in distributed working environments.”
Therefore it is important that technological support is devel-
oped that supports this process so that the advantages of
distributed development can be fully exploited. Omoronyia
et al. also claim that: “to leverage the advantages of both co-
located and distributed development, it is important that tool
support for distributed teams aims to emulate the attributes
of co-location awareness.”

III. AWARENESS AND TECHNOLOGICAL SUPPORT

In this section we will closely follow Omoronyia et al.
[23] because while there exist other reviews (e.g. [24], [25])
this is the only review of existing technological support for
awareness in distributed software engineering teams which
links awareness types and their support requirements and in
turn cross references awareness systems with these support
requirements. Omoronyia et al. choose to focus on five types
of awareness that are particularly relevant to supporting
group dynamics that exist during collaborative work [26],
[27] and use these to structure the analysis of existing
technological support. The requirement categories are [23]:

1) Workspace Awareness: The up-to-the-minute knowl-
edge of other participants interactions with the shared
workspace [28]

2) Informal Awareness: The general sense of who is
around, what they are doing, and what they are going
to do [26]

3) Group-Structural Awareness: Knowledge about peo-
ples roles and responsibilities, their positions on an
issue, their status, and group processes [26]

4) Social Awareness: Information about the presence and
activities of people in a shared environment [29]

5) Context Awareness: The evolving internal and external
state information that fully characterizes the situation
of each entity in a shared environment [23]

Omoronyia et al. analyze how well current solutions
support awareness by comparing a set of these solutions
with a list of awareness elements these can support. This
list of awareness elements is created by extending a list of
awareness elements defined by Gutwin et al. (see Table 1
in [26]) with additional elements based on the specific five
awareness types they consider (see Table II in [23] for this
list). The selection of tools to consider was arrived at by
going over a range of techniques that have been used to
enhance awareness during distributed software development
within IDEs and related tools. The techniques they consid-
ered were: social tagging, mining relationships, monitoring
interactions, a combination of mining relationships and
monitoring interactions and, finally, including the notion of
time with that combination. The resulting summarizing table
depicting which awareness elements the different tools that
are discussed support is shown in Table III in [23].

The main benefit of this table is that it helps to identify
those elements that are reasonably well supported by existing
solutions and techniques and the elements that are not.
Looking at the table we see that most of the elements are
supported by more than one of the considered tools. The
main exceptions to this are the location of developers, the
extent to which they are available and all but one of the
elements related to context awareness. Therefore these seem
like good areas to direct further research.



IV. APPROACH

In this section we discuss our approach to researching
supporting awareness with technology. First we discuss the
main objectives we want to achieve and the reasoning behind
these objectives. Following this we discuss how we aim to
reach these objectives by describing the setting in which
the solution will be evaluated and the process we employ
in developing and evaluating the solution in that setting.
Finally we also briefly discuss how we are implementing
the proposed system.

A. Objectives

The goal of our research is to determine how best to
support distributed software engineering with technological
support for aiding people to acquire sufficient awareness.
The two core objectives of our approach to achieve this are
the following:

1) Support all awareness needs of software developers in
a single platform

2) Enable integration of the awareness information from
different information sources

We arrived at these objectives as follows. Having re-
searched the extensive literature of existing attempts at
supporting awareness for distributed software engineers (and
having developed and evaluated our own solution for being
aware of conversations of colleagues, see [30], [31], [32])
we identified a pitfall a lot of these approaches suffer from.
Most tools are designed to help resolve a specific type of
question and target a specific software artifact. Sillito [33]
reports on an empirical study on how programmers resolve
change tasks and how tools support them in answering
questions they have in the process of carrying out these
tasks. He reported that most of the tools that he researched
treat questions as if they are asked in isolation while they
often are, in fact, part of a larger process. Examples are
asking questions on different levels of abstraction and asking
questions involving different information sources. Because
awareness questions are often part of a larger process,
involving a series of questions and activities that provide
context, it is often difficult for distributed software engineers
to obtain sufficient contextual awareness [23]. Therefore we
feel it is highly valuable for a tool supporting awareness
for distributed software engineers to facilitate combining the
different types of awareness information. Firstly, we propose
to do this by providing a single platform to support all
awareness needs of distributed software engineers. Secondly,
Sillito [33] also states that even programs that do support
asking different questions generally fail at combining the in-
formation in a useful way and merely report the information
in isolation as largely undifferentiated and unconnected lists.
Therefore we also think it is important to enable the integra-
tion of the awareness information from different information
sources. An example of a good approach in enabling such

integrated support for a broad range of awareness elements
are extensible plugin architecture as can be found in the Jazz
and Eclipse IDEs.

B. Setting

The development and evaluation of the solution we are
creating is relatively unique because it is done at a com-
pany called IHomer, a Dutch software engineering company
founded in August of 2008, which is distributed in the
true sense of the word. The company works with highly
responsible, proactive people, which is also reflected in how
it calls the people that form it: participants (instead of
employees). It is also reflected in responsibilities because all
participants are responsible for all business decisions like the
strategy, vision and core values, in contrast with employees
at ’regular’ companies who are mainly responsible for the
specific role they fulfill. As of the time of this writing the
company employs 18 participants.

In the company, physically distributed collaboration is
common since participants aim to work from home as
much as possible. This makes the company a particularly
suitable setting for performing this research because of
two reasons. Firstly, the people are quite experienced with
dealing with the difficulties of working distributed from
each other and therefore have quite a good understanding
of what is needed to improve this situation. Because of
this we can closely collaborate with the other participants
to determine which types of awareness are most beneficial
to support first and what are good ways to achieve this.
Next to this, the other participants also collaborate with
us in realizing the actual technical implementations which
improves the quality of the solutions and reduces the time it
takes to realize these. Secondly, we can also perform high
quality evaluations because the company perfectly matches
the target setting for which we are attempting to solve
issues: a fully distributed organization. These evaluations
can also be done in a lightweight manner and with low
turnaround time because of the high quality feedback the
other participants can give us due to their experience with
distributed collaboration. Finally, because the participants
encounter the issues we are attempting to solve in their daily
work the solutions will also benefit them directly.

C. Process

Based on the specific characteristics of the project, the
setting we are conducting research in and our own ex-
periences in the past, the process we use should fulfill
three requirements. Firstly, it should be able to cope with
uncertainty and changing requirements since we are creating
a genuinely novel product and projects creating genuinely
novel products are often faced with uncertainty regarding
both requirements and implementation technologies. Sec-
ondly, it should involve the intended users of the system
as strongly as possible because they are quite experienced



with working in a distributed setting since this is something
they encounter on a daily basis. Finally, it should stimulate
the usage of the platform by all users by providing value
as soon as possible. This is important because in earlier
research [32] we found that the value of awareness sharing
technology (CSCW groupware) is higher when a larger
portion of the team uses it and that this is often a problem
when introducing such tools in practical settings.

We elect to use an agile process methodology to realize
the platform we are creating because such a methodol-
ogy fulfills all three of these requirements. Firstly, such
a methodology is better able to cope with uncertainty
and changing requirements in projects than plan-driven ap-
proaches [34]. The main ways in which this is accomplished
is by acquiring rapid feedback from the actual users of the
system by using short iterations, rapid deployment and work-
ing closely with the customers. Working closely with the
customers is done to acquire feedback but also to discover
how value can be created as quickly as possible resulting
in increased customer satisfaction and commitment. The
specific methodology we elect to use is Scrum [35], [36] an
agile process which emphasizes a set of project management
values and practices [37]. It does not define any specific
software development techniques for the implementation
phase but concentrates on how the team members should
function in order to produce the system in a flexible way in
a constantly changing environment [38].

In the specific way we have implemented the Scrum
process in our case, we work with two-week iterations,
referred to as sprints in Scrum. An overview of how our
sprints looks like is depicted in Fig. 1. Each sprint starts
with a sprint planning meeting in which we decide what
to do in the sprint based on the product backlog, which
is a prioritized list of features for the product, and an
estimate of the amount of work of the different user stories
on the product backlog: we decide on the sprint backlog.
At the end of each sprint we perform a sprint review and
a sprint retrospective. The goal of the sprint review is to
discuss what has been done in the sprint and compare this
to what was agreed upon in the sprint planning meeting at
the start of the sprint. The sprint review revolves around
reviewing the product and also includes a demonstration
of the product. The sprint retrospective revolves around
reviewing the process and is intended improve this in the
next sprint.

For practical reasons we hold the sprint review and sprint
retrospective of one sprint on the same day as the sprint
planning meeting of the next sprint. We do this because we
require the same group of people to be present at all three
meetings, namely the product owner, the development team
and a specific unchanging subgroup of the stakeholders.
The stakeholders are all the participants at IHomer because
these are all users of the system we are creating. The
product owner is one of them, and he is responsible for

representing all stakeholders and making decisions based on
this responsibility. We have decided to include a subgroup of
other stakeholders, next to the product owner, in the sprint
review and sprint planning meeting to make it easier for the
product owner to determine the point of view of the other
stakeholders and make decisions based on this. Further, we
have included the subgroup of stakeholders in the sprint
retrospective as well because in the way we implemented
the process, with continual deployment and direct feedback
from the stakeholders, the stakeholders are an important and
direct part of the process and aspects of the process which
include them should be analyzed and improved upon as well.

During a sprint we perform a daily Scrum and release a
new built every day. The daily Scrum is a 15-minute time-
boxed event for the development team and the product owner
to synchronize activities and create a plan for the next 24
hours. This is done by inspecting the work since the last
daily scrum and forecasting the work that could be done
before the next one. We release a new built every day to
provide value and acquire feedback as soon as possible. Two
times during a sprint we perform backlog grooming, once on
the half-way point and once at the end, on the day before the
sprint review, retrospective and planning meeting. Backlog
grooming is the act of adding detail, estimates, and order to
items on the product backlog. The final role in our process is
that of the Scrum master, who is responsible for ensuring the
process is followed and impediments are removed. This role
is performed by the different members of the development
team on a rotation basis.

To provide all stakeholders of the project real time insight
in the project and the progress we work with a Scrum-board
which we maintain and share using Trello1, a collaboration
tool which organizes projects into boards. On such a board
items move along various stages of progress. We use the
following stages:

• Idea Box: All stakeholders can insert ideas here, but
also problems they encounter like actual bugs or other
types of feedback. Items can be picked up and put on
the product backlog when appropriate

• Product Backlog: Prioritized list of features for the
product

• Sprint backlog: list of work items that are (going to be)
implemented in the current sprint

• Under development: Work items that are currently
being worked on

• Deployed in current sprint: Work items completed in
the current sprint that are already deployed in the live
system

Items can be inserted on various stages on the board based
on their actual current status. We differentiate between six
types of items on this board:

1www.trello.com



Figure 1: Sprint Overview

• Feedback: Reaction to how the system currently func-
tions and explanation of why this is insufficient/sub-
optimal

• Idea: A rough idea of an addition or alteration to the
product backlog

• User Story: One or more sentences in the everyday
or business language of the end user that captures
something the user wants to achieve using the system

• Defect: Report of behavior of the system that is in
contrast with how the system should function

• Task: A unit of work generally between four and sixteen
hours which contributes to a backlog item

• Research Task: Because we also perform research and
write papers in this project we place these on the
backlog as well to increase transparency and facilitate
sprint planning.

D. Implementation
In section A we discussed the two core objectives of

our approach: (i) support all awareness needs of software
developers in a single platform and (ii) enable integration
of the awareness information from different information
sources. These objectives place some constraints on our
choice of implementation technology. Firstly, the technology
should be cross platform because we want to support all
awareness needs in a single platform and our stakeholders
use a variety of systems such as Linux, Windows and
Mac OS, but also a number of Mobile Operating Systems
running on tablets and phones. Therefore the three main
options we considered were HTML 5, Adobe Flex and
Java FX 2. We choose to go with Adobe Flex because
the communication functionalities of HTML 5 are not yet

supported in popular web browsers and because Java FX
2 is not yet available for Linux and Mac OS as a stable
release. Adobe Flex on the other hand works on all major
desktop and mobile platforms, either as a browser plugin
or as a standalone Adobe AIR application. The second
constraint originating from the single platform objective is
that the technology should allow for scalability. We choose
to support scalability by using peer-to-peer communication
between the users of the system as much as possible. In
combination with our choice for Adobe Flex we have chosen
to use Real Time Media Flow Protocol (RTMFP) to facilitate
the peer-to-peer communication. Our second objective leads
to a third constraint on the technology we choose, namely
that this should be extensible to facilitate the integration of
awareness information from different information sources.
To achieve this we have chosen to use a Model-View-
Controller framework with an event bus: Mate2. Using
the Model-View-Controller design pattern results in more
extensible code because the model, view and controller are
split into separate, loosely coupled components which makes
it possible to adapt the flow of the application without
changing the model or the view. Using an approach with
a central event bus also leads to a more extensible solution
since this makes it possible to extend an application without
altering the existing solution.

So far, we have performed two sprints and our stakehold-
ers are using a version of the system in which we support the
following: (i) standard synchronous communication meth-
ods: text, audio and audio combined with video, (ii) showing
the availability of the other users (available/unavailable),

2http://mate.asfusion.com



(iii) showing the current activity of the other users and (iv)
showing the location where the other users are going to work
tomorrow. We have chosen to start by supporting standard
synchronous communication because our stakeholders iden-
tified this as highly valuable and because software engineers
spend a large portion of their time communicating [39], [22].
The other three functionalities arise directly from needs our
stakeholders expressed. They want to know who is available
to decide whether or not to try and contact someone, they
want to know someone’s current activity to be able anticipate
on this and they want to know where colleagues work the
next day to be able to more easily identify possibilities for
working co-located.

V. SUMMARY AND FUTURE WORK

In this paper we have presented the research we are
currently performing to determine how best to support
distributed software engineering with technological support
by aiding people to acquire sufficient awareness. First we
discussed this is an important topic because of the increasing
popularity of distributed development and the challenges
this causes. Following this we talked about existing work
in facilitating distributed development by supporting the
sharing of awareness with technological solutions and about
what these solutions support well and where there exist
possibilities for improvement. Subsequently we talked about
our own approach. We did this by describing and explaining
our objectives, describing the setting in which we perform
our research, discussing the process we use and finally, by
talking about the implementation.

The most valuable contribution of this paper is: The
description of our own unique approach to research how
to support awareness in distributed software engineering
in which we collaborate with software engineers in a fully
distributed company to identify the encountered problems,
produce solutions using an agile process and to evaluate
these solutions.

During the first two sprints we have generated some
interesting ideas for future work. It would for example
be interesting to provide insight into the occurrence and
content of the communication of your colleagues. This is
both true when you are working together on a project at the
same time (e.g. overhearing a conversation of colleagues)
but also when you have been away and want to catch
up on what happened on the project during your absence.
Another example is to let the platform help the users to
select the most appropriate form to communicate with their
colleagues. Users could for example configure which means
of communication they favor in certain situations (e.g. when
in a car) and it can also be shown when certain means
of communication are currently infeasible (e.g. audio call
during a meeting). Similarly the system could also aid in
determining who to contact based on a specific question or
problem (e.g. who could help me with this specific class?).

Finally, it is also possible to show something such as the
mood of people in the platform. When working in the same
room it is often clear what someone his mood is and when
for example someone is unhappy for a prolonged period of
time, steps can be taken to find the cause and solve this.
When working distributed from each other, such things can
go unnoticed and lead to larger problems which can be
harder to solve. We already made some first steps in this
and users reported they like to share what they are doing
and how they feel about this with their colleagues.

REFERENCES

[1] P. Dourish and V. Bellotti, “Awareness and Coordination in
Shared Workspaces,” in Proceedings of the ACM 1992 Con-
ference on Computer Supported Cooperative Work. ACM
Press, 1992, pp. 107–114.

[2] J. Fogarty, S. Hudson, C. Atkeson, D. Avrahami, J. Forlizzi,
S. Kiesler, J. Lee, and J. Yang, “Predicting human interrupt-
ibility with sensors,” ACM Transactions on Computer-Human
Interaction, vol. 12, no. 1, pp. 119–146, 2005.

[3] K. Schmidt, “The Problem with ‘Awareness’: Introductory
Remarks on ‘Awareness in CSCW’,” Computer Supported
Cooperative Work, vol. 11, no. 3-4, pp. 285 – 298, 2002.

[4] E. Carmel, Global software teams: collaborating across bor-
ders and time zones. Upper Saddle River: Prentice Hall PTR,
1999.

[5] J. Herbsleb and D. Moitra, “Guest Editors’ Introduction:
Global Software Development,” IEEE Software, vol. 18, no. 2,
pp. 16–20, 2001.

[6] J. Herbsleb, “Global Software Engineering: The Future of
Socio-technical Coordination,” in Proceedings of the IEEE
2007 Workshop on the Future of Software Engineering. IEEE
Computer Society Press, 2007, pp. 188–198.

[7] The Dieringer Research Group Inc., “Telework Trendlines
2009: A Survey Brief by WorldatWork,” 2009.

[8] R. Grinter, J. Herbsleb, and D. Perry, “The geography of coor-
dination: dealing with distance in R&D work,” in Proceedings
of the ACM SIGGROUP 1999 International Conference on
Supporting Group Work. ACM Press, 1999, pp. 306–315.

[9] D. Damian and D. Moitra, “Guest Editors’ Introduction:
Global Software Development: How Far Have We Come?”
IEEE Software, vol. 23, no. 5, pp. 17–19, 2006.

[10] C. Ebert and P. De Neve, “Surviving global software devel-
opment,” IEEE Software, vol. 18, no. 2, pp. 62–69, 2001.

[11] J. Herbsleb and R. Grinter, “Architectures, coordination, and
distance: Conway’s law and beyond,” IEEE Software, vol. 16,
no. 5, pp. 63–70, 1999.

[12] E. Carmel and R. Agarwal, “Tactical approaches for alleviat-
ing distance in global software development,” IEEE Software,
vol. 18, no. 2, pp. 22–29, 2001.



[13] I. Harpaz, “Advantages and disadvantages of telecommut-
ing for the individual, organization and society,” Interna-
tional Journal of Productivity and Performance Management,
vol. 51, no. 2, pp. 74–80, 2002.

[14] B. Hesse and C. Grantham, “Electronically Distributed Work
Communities: Implications for Research on Telework,” Inter-
net Research, vol. 1, no. 1, pp. 4–17, 1991.

[15] J. Pratt, “Myths and Realities of Working at Home: Character-
istics of Homebased Business Owners and Telecommuters,”
National Technical Information Service, Tech. Rep., 1993.

[16] A. Syri, “Tailoring cooperation support through mediators,” in
Proceedings of the 1997 European Conference on Computer
Supported Cooperative Work. Kluwer Academic Publishers,
1997, pp. 157–172.

[17] A. Ko, R. DeLine, and G. Venolia, “Information needs in
collocated software development teams,” in Proceedings of
the 29th international conference on Software Engineering.
IEEE Computer Society, 2007, pp. 344–353.

[18] J. Cadiz, G. Venolia, G. Jancke, and A. Gupta, “Sideshow:
Providing peripheral awareness of important information,”
Microsoft Research, Collaboration, and Multimedia Group,
Tech. Rep., 2001.

[19] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the
software design process for large systems,” Communications
of the ACM, vol. 31, no. 11, pp. 1268–1287, 1988.

[20] L. Segal, “Designing team workstations: The choreography
of teamwork,” Local applications of the ecological approach
to human-machine systems, vol. 2, 1995.

[21] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-computer
interaction. Prentice hall, 2004.

[22] D. Perry, N. Staudenmayer, and L. Votta, “People, organi-
zations, and process improvement,” Software, IEEE, vol. 11,
no. 4, pp. 36 –45, Jul. 1994.

[23] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood, “A
review of awareness in distributed collaborative software
engineering,” Software: Practice and Experience, vol. 40,
no. 12, pp. 1107–1133, 2010.

[24] M. Storey, D. Čubranić, and D. German, “On the use of visu-
alization to support awareness of human activities in software
development: a survey and a framework,” in Proceedings of
the 2005 ACM symposium on Software visualization. ACM,
2005, pp. 193–202.

[25] A. Sarma, “A survey of collaborative tools in software devel-
opment,” University of California, Irvine, Tech. Rep., 2005.

[26] C. Gutwin, S. Greenberg, and M. Roseman, “Workspace
awareness in real-time distributed groupware: Framework,
widgets, and evaluation,” People and Computers, pp. 281–
298, 1996.

[27] T. Gross, C. Stary, and A. Totter, “User-centered awareness
in computer-supported cooperative work-systems: Structured
embedding of findings from social sciences,” International
Journal of Human-Computer Interaction, vol. 18, no. 3, pp.
323–360, 2005.

[28] C. Gutwin, G. Stark, and S. Greenberg, “Support for
workspace awareness in educational groupware,” in The 1995
international conference on Computer support for collabora-
tive learning. Erlbaum Associates Inc., 1995, pp. 147–156.

[29] W. Prinz, “Nessie: an awareness environment for cooperative
settings,” in ECSCW99. Springer, 2002, pp. 391–410.

[30] K. Dullemond, B. van Gameren, and R. van Solingen, “Virtual
open conversation spaces: Towards improved awareness in a
GSE setting,” in Proceedings of the 2010 International Con-
ference on Global Software Engineering. IEEE Computer
Society Press, 2010, pp. 247–256.

[31] ——, “Overhearing Conversations in Global Software En-
gineering - Requirements and an Implementation,” in Pro-
ceedings of the 2011 International Conference on Collabora-
tive Computing: Networking, Applications and Worksharing.
IEEE, 2011.

[32] Dullemond, K. and van Gameren, B. and van Solingen,
R., “An Industrial Evaluation of Technological Support for
Overhearing Conversations in Global Software Engineer-
ing,” Delft University of Technology, Tech. Rep., 2011,
http://www.aspic.nl/publications/TechReport001.pdf.

[33] J. Sillito, G. Murphy, and K. De Volder, “Asking and answer-
ing questions during a programming change task,” Software
Engineering, IEEE Transactions on, vol. 34, no. 4, pp. 434–
451, 2008.

[34] K. Dullemond and B. van Gameren, “Technological support
for distributed agile development,” Master thesis, Delft Uni-
versity of Technology, 2009.

[35] K. Schwaber and J. Sutherland, “Scrum guide,” Scrum Al-
liance, 2011.

[36] K. Schwaber, “Scrum development process,” in Proceedings
of the 1995 ACM Conference on Object Oriented Program-
ming Systems, Languages, and Applications, 1995.

[37] C. Larman, Agile and iterative development: a manager’s
guide. Addison-Wesley Professional, 2004.

[38] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile
software development methods. Review and analysis. VTT
Publications, 2002.

[39] J. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,”
IEEE Transactions on Software Engineering, vol. 29, no. 6,
pp. 481–494, 2003.


